skip to main content


Search for: All records

Creators/Authors contains: "Graur, Or"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The gravitationally lensed supernova Refsdal appeared in multiple images produced through gravitational lensing by a massive foreground galaxy cluster. After the supernova appeared in 2014, lens models of the galaxy cluster predicted that an additional image of the supernova would appear in 2015, which was subsequently observed. We use the time delays between the images to perform a blinded measurement of the expansion rate of the Universe, quantified by the Hubble constant (H0). Using eight cluster lens models, we inferH0=64.84.3+4.4 kilometers per second per megaparsec. Using the two models most consistent with the observations, we findH0=66.63.3+4.1 kilometers per second per megaparsec. The observations are best reproduced by models that assign dark-matter halos to individual galaxies and the overall cluster.

     
    more » « less
    Free, publicly-accessible full text available June 9, 2024
  2. ABSTRACT

    We present new spectroscopic and photometric follow-up observations of the known sample of extreme coronal line-emitting galaxies (ECLEs) identified in the Sloan Digital Sky Survey (SDSS). With these new data, observations of the ECLE sample now span a period of two decades following their initial SDSS detections. We confirm the non-recurrence of the iron coronal line signatures in five of the seven objects, further supporting their identification as the transient light echoes of tidal disruption events (TDEs). Photometric observations of these objects in optical bands show little overall evolution. In contrast, mid-infrared (MIR) observations show ongoing long-term declines consistent with power-law decay. The remaining two objects had been classified as active galactic nuclei (AGNs) with unusually strong coronal lines rather than being TDE related, given the persistence of the coronal lines in earlier follow-up spectra. We confirm this classification, with our spectra continuing to show the presence of strong, unchanged coronal line features and AGN-like MIR colours and behaviour. We have constructed spectral templates of both subtypes of ECLE to aid in distinguishing the likely origin of newly discovered ECLEs. We highlight the need for higher cadence, and more rapid, follow-up observations of such objects to better constrain their properties and evolution. We also discuss the relationships between ECLEs, TDEs, and other identified transients having significant MIR variability.

     
    more » « less
  3. ABSTRACT

    Type Ia supernovae (SNe Ia) play a crucial role as standardizable candles in measurements of the Hubble constant and dark energy. Increasing evidence points towards multiple possible explosion channels as the origin of normal SNe Ia, with possible systematic effects on the determination of cosmological parameters. We present, for the first time, a comprehensive comparison of publicly available SN Ia model nucleosynthetic data with observations of late-time light curve observations of SN Ia events. These models span a wide range of white dwarf (WD) progenitor masses, metallicities, explosion channels, and numerical methodologies. We focus on the influence of 57Ni and its isobaric decay product 57Co in powering the late-time (t > 1000 d) light curves of SNe Ia. 57Ni and 57Co are neutron-rich relative to the more abundant radioisotope 56Ni, and are consequently a sensitive probe of neutronization at the higher densities of near-Chandrashekhar (near-MCh) progenitor WDs. We demonstrate that observations of one SN Ia event, SN 2015F is only consistent with a sub-Chandrasekhar (sub-MCh) WD progenitor. Observations of four other events (SN 2011fe, SN 2012cg, SN 2014J, and SN2013aa) are consistent with both near-MCh and sub-MCh progenitors. Continued observations of late-time light curves of nearby SNe Ia will provide crucial information on the nature of the SN Ia progenitors.

     
    more » « less
  4. ABSTRACT

    The Reionization Cluster Survey imaged 41 galaxy clusters with the Hubble Space Telescope (HST), in order to detect lensed and high-redshift galaxies. Each cluster was imaged to about 26.5 AB mag in three optical and four near-infrared bands, taken in two distinct visits separated by varying time intervals. We make use of the multiple near-infrared epochs to search for transient sources in the cluster fields, with the primary motivation of building statistics for bright caustic crossing events in gravitational arcs. Over the whole sample, we do not find any significant (≳5σ) caustic crossing events, in line with expectations from semi-analytical calculations but in contrast to what may be naively expected from previous detections of some bright events or from deeper transient surveys that do find high rates of such events. Nevertheless, we find six prominent supernova (SN) candidates over the 41 fields: three of them were previously reported and three are new ones reported here for the first time. Out of the six candidates, four are likely core-collapse SNe – three in cluster galaxies, and among which only one was known before, and one slightly behind the cluster at z ∼ 0.6–0.7. The other two are likely Ia – both of them previously known, one probably in a cluster galaxy and one behind it at z ≃ 2. Our study supplies empirical bounds for the rate of caustic crossing events in galaxy cluster fields to typical HST magnitudes, and lays the groundwork for a future SN rate study.

     
    more » « less
  5. Abstract

    In late 2014, four images of supernova (SN) “Refsdal,” the first known example of a strongly lensed SN with multiple resolved images, were detected in the MACS J1149 galaxy-cluster field. Following the images’ discovery, the SN was predicted to reappear within hundreds of days at a new position ∼8″ away in the field. The observed reappearance in late 2015 makes it possible to carry out Refsdal’s original proposal to use a multiply imaged SN to measure the Hubble constantH0, since the time delay between appearances should vary inversely withH0. Moreover, the position, brightness, and timing of the reappearance enable a novel test of the blind predictions of galaxy-cluster models, which are typically constrained only by the positions of multiply imaged galaxies. We have developed a new photometry pipeline that usesDOLPHOTto measure the fluxes of the five images of SN Refsdal from difference images. We apply four separate techniques to perform a blind measurement of the relative time delays and magnification ratios between the last image SX and the earlier images S1–S4. We measure the relative time delay of SX–S1 to be376.05.5+5.6days and the relative magnification to be0.300.3+0.5. This corresponds to a 1.5% precision on the time delay and 17% precision for the magnification ratios and includes uncertainties due to millilensing and microlensing. In an accompanying paper, we place initial and blind constraints on the value of the Hubble constant.

     
    more » « less
  6. Abstract

    We present JWST near-infrared (NIR) and mid-infrared (MIR) spectroscopic observations of the nearby normal Type Ia supernova (SN) SN 2021aefx in the nebular phase at +255 days past maximum light. Our Near Infrared Spectrograph (NIRSpec) and Mid Infrared Instrument observations, combined with ground-based optical data from the South African Large Telescope, constitute the first complete optical+NIR+MIR nebular SN Ia spectrum covering 0.3–14μm. This spectrum unveils the previously unobserved 2.5−5μm region, revealing strong nebular iron and stable nickel emission, indicative of high-density burning that can constrain the progenitor mass. The data show a significant improvement in sensitivity and resolution compared to previous Spitzer MIR data. We identify numerous NIR and MIR nebular emission lines from iron-group elements as well as lines from the intermediate-mass element argon. The argon lines extend to higher velocities than the iron-group elements, suggesting stratified ejecta that are a hallmark of delayed-detonation or double-detonation SN Ia models. We present fits to simple geometric line profiles to features beyond 1.2μm and find that most lines are consistent with Gaussian or spherical emission distributions, while the [Ariii] 8.99μm line has a distinctively flat-topped profile indicating a thick spherical shell of emission. Using our line profile fits, we investigate the emissivity structure of SN 2021aefx and measure kinematic properties. Continued observations of SN 2021aefx and other SNe Ia with JWST will be transformative to the study of SN Ia composition, ionization structure, density, and temperature, and will provide important constraints on SN Ia progenitor and explosion models.

     
    more » « less